Renewable Electricity Procurement Guidebook - Digest Edition - Renewable Energy Institute ## Objective and Background - Content of this guidebook is compiled for helping corporate energy users and local governments to procure renewable electricity in efficient ways in Japan. - Activities for mitigating climate change and environmental destruction have been accelerating renewable electricity demand globally. - With reducing fossil fuels and nuclear power dependence, corporate users can maintain sustainable business while local governments can revive economy by utilizing renewables. - This digest edition explains methods of procurement in Japan and criteria of selection with referring international standards and guidelines. #### Benefits of Renewables - 1 Not exhaustible - ② No emission of carbon dioxide and radioactive waste - ③ No need of fuels (except bioenergy using renewable fuels) - 4 Predictive costs in a long term - ⑤ Distributed power generation using local resources # Generation of Renewable Electricity | Technology | Generation mechanism | Features | | |------------|--|---|--| | Solar | Photovoltaic cells generate electron from light energy. Amount of solar radiation determines quantity of generation. | No sound and vibration Generating electricity only daytime Output affected by weather | | | Wind | Blades receive wind power and rotate turbine/generator. Size of blade and wind velocity determines quantity of generation. | Requiring certain level of wind speed Output affected by weather Sound and vibration in adjacent area | | | Hydro | Water flow rotates turbine/generator. Amount of water and height of flow determines quantity of generation. | Output controllable by water flow Environmental issue of large hydro Small hydro with existing water flow recommended | | ## Generation of Renewable Electricity | Technology | Generation mechanism | Features | | |----------------|--|---|--| | Geo
thermal | Vapor from underground rotates turbine/generator. Hot water with vapor may be used. Amount and temperature of vapor/water determines quantity of generation. | Consistent output Warm water after generation can be used as secondary energy Environmental issue in case of digging underground | | | Bio | Vapor or thermal by burning bio fuels rotate turbine/generator. Fuels can be solid, liquid or gas. Amount of thermal by fuels determines quantity of generation. | Carbon dioxide from bio fuels offset
by biological origin Thermal after generation can be
used as secondary energy Environmental issue by sustainability
of fuels | | # Criteria of Renewable Electricity | Criteria | Requirement | Inappropriate examples | | |-------------------------|--|--|--| | Basic | Generate electricity by renewable energy. No emission of carbon dioxide and radioactive waste. | > Fossil fuel power plant emitting carbon dioxide and toxic materials> Nuclear power plant emitting radioactive waste | | | Environmental
Impact | Low environmental impact in constructing and operating power plant. | > Solar power plant developed in the forest > Large hydro power plant using dam > Bioenergy power plant using fuels leading to destruction of forest and farm | | | Additionality | Generate new renewables
to replace fossil
fuel/nuclear power plant | > Old renewable power plant | | | Locality | Developed and/or agreed by local community | > Power plant without local agreement and involvement | | ## Major Procurement Methods in Japan | Method | Description | Features | |------------------------------------|---|---| | On-site
Generation | Construct renewable energy power plant and consume generated electricity internally | Initial investment required Low-cost renewable electricity secured Environmental aspects of power plant identified Risks of trouble in operation | | Green
Product | Purchase renewable electricity from retailer | Short-time contract available Specific power sources unidentifiable (some cases) Higher tariff than standard products (many cases) | | Renewable
Energy
Certificate | Purchase certificate derived from renewable electricity | Separated from physical procurement Specific power sources identifiable Additional cost on top of electricity procurement | | Long-term
Investment
(PPA) | Invest renewable energy development and receive electricity and/or attribute | New renewable electricity added Retailer involved in 3-way contract for PPA Environmental aspects of power plant identified Business risks of long-term investment | # Renewable Electricity Certificates | | Green Electricity
Certificate | J-Credit
(renewable-origin) | Non-fossil Certificate
(Feed-in-tariff) | |----------------------|--|--|--| | Issuer | Green Electricity
Certificate Issuer | Government | Green Investment Promotion Organization | | Technology | Solar, Wind, Hydro,
Geothermal, Bio
(mostly bio) | Solar, Wind, Hydro,
Geothermal, Bio
(mostly solar) | Solar, Wind, Hydro,
Geothermal, Bio
(mostly solar) | | Purchaser | Any Entity | Any Entity | Only Electricity Retailer | | Purchasing
Method | Direct from Issuer | Auction or from credit owner/broker | Auction at Non-fossil
Value Trading Market | | Issue Amount | 0.4 TWh
(FY 2017) | 1.2 TWh
(FY 2017) | 53 TWh
(Apr-Dec, 2017) | | Price | Ave. JPY 3-4/kWh for bulk purchase (FY 2017) | Approx. JPY 0.9/kWh (auction in Apr 2018) | JPY 1.3-4.0/kWh
(auction in FY 2018) | #### Generation Cost and Procurement | | Short-term
(- 2020) | Mid-term
(2020 - 2030) | Long-term
(2030 -) | |--------------------------------|---|--|---| | Generation
Cost (est.) | Solar: JPY 15-20/kWh
Wind: JPY 15/kWh | Solar: JPY 7-14/kWh
Wind: JPY 10-15/kWh | Solar: below JPY 7/kWh
Wind: below JPY 10/kWh | | New Policy | FY 2019 and beyond: Solar houses will finish feed-in-tariff and provide low-cost renewable electricity. | FY 2020: Utilities must unbundle transmission/distribution business to drive competition of generation and retail. | FY 2032 and beyond: Large-scale renewable plants will finish feed-in- tariff and provide low- cost electricity. | | RE in Japan
(est.) | 16% (actual, FY 2017)
20% or higher
(FY 2020) | 30% or higher (FY 2030)
*22-24% in FY 2030 by
government target | 50% or higher (2040's) | | Major
Procurement
Method | Green Product,
RE Certificate | Green Product, On-site Generation, Long-term Investment | Green Product,
Long-term Investment,
On-site Generation | ## Generation Cost Outlook in Japan Source: Bloomberg NEF #### Procurement Policy Options #### [Select by technology] Procure renewable electricity, including Feed-in-tariff-applied, in terms of actual CO2 emission factor regardless of the effectiveness of official reporting to the government and international initiatives. #### [Select by CO2 emission] Procure renewable electricity with zero or low CO2 emission factor effective for reporting to the government and international initiatives, allowing combination of renewable energy certificate and non-renewable electricity. #### International Criteria of CO2 emission CO2 emission from electricity consumption calculated by Location-based and Market-based method [Location-based] Apply grid or national average CO2 emission factor [Market-based] Apply CO2 emission factor by each procurement method Source: CDP # Comparison of CO2 emission etc. | Electricity/Certificate purchased | Plant/Technology | CO2 emission
(by Japanese law) | Environmental
Impact | Additionality | |--|---|---|--|---------------| | FIT-certified electricity (by PPA) | Selectable | National average | Low | Yes | | Electricity with non-fossil certificate | Not selectable
(some certificates
selectable) | Zero/almost-zero
(depending on
electricity) | Depending on electricity | No | | FIT-certified electricity
(by PPA) with non-fossil
certificate | Selectable | Zero | Low | Yes | | Renewable electricity without FIT | Selectable | Zero (certification required) | Depending on plant | Yes | | Hydro 100% product | Hydro
(plant not
selectable) | Zero | Not always low (in case of large hydro included) | No | | Green Electricity
Certificate | Selectable | national average reducible | Low | Yes | | J-Credit | Selectable | national average reducible | Low | Yes | ## Class of Renewable Electricity | | Requirement | Examples | International guideline | |---------|---|---|-------------------------| | Class 3 | Generated by renewable energy | > FIT-certified electricity | - | | Class 5 | Zero CO2 emission | Non-fossil certificateHydro 100% product | CDP | | | Plant identifiable | > Renewable electricity without FIT | | | Class 2 | Low environmental impact certified | > Green electricity certificate> J-credit> Non-fossil certificate with attribute | RE100 | | Class 1 | Additionality for more renewable energy | > Green electricity certificate (new project)> J-credit (new project)> Non-fossil certificate with FIT electricity PPA | Green-e
(North | | | | On-site generation/consumptionRenewable electricity by investment | America) | ^{*} Class 1 is most desirable. # RE certificate outside Japan | Certificate | Certificate Country / Region | | |--|---|--| | Guarantee of Origin
(GO) | EU (28 countries), Iceland, Norway,
Switzerland | EECS (European Energy
Certification System)
or national system | | Renewable Energy
Certificate (REC) | United States, Canada, Puerto Rico | Regional system | | International
Renewable Energy
Certificate (I-REC) | Brazil, Chili, China, Columbia,
Guatemala, Honduras, India, Israel,
Jordan, Malaysia, Mexico, Philippines,
Saudi Arabia, Singapore, South Africa,
Taiwan, Thailand, Turkey, UAE,
Uganda, Vietnam | National system | #### [Contact] Renewable Energy Institute DLX Building, 1-13-1 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 TEL: +81-3-6866-1020 FAX: +81-3-6866-1021 E-mail: info@renewable-ei.org Renewable Energy Institute